This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.22 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sbc5g | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑤 = 𝑦 ↔ 𝑤 = 𝐵 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 4 | 3 | 2exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 5 | dfsbcq | ⊢ ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] 𝜑 ) ) | |
| 6 | 5 | sbcbidv | ⊢ ( 𝑦 = 𝐵 → ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 7 | 4 6 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| 8 | eqeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝐴 ) ) | |
| 9 | 8 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) |
| 10 | 9 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 11 | 10 | 2exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 12 | dfsbcq | ⊢ ( 𝑥 = 𝐴 → ( [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) | |
| 13 | 11 12 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| 14 | sbc5 | ⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ) | |
| 15 | 19.42v | ⊢ ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ↔ ( 𝑧 = 𝑥 ∧ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) | |
| 16 | anass | ⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) | |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 18 | sbc5 | ⊢ ( [ 𝑦 / 𝑤 ] 𝜑 ↔ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) | |
| 19 | 18 | anbi2i | ⊢ ( ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( 𝑧 = 𝑥 ∧ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 20 | 15 17 19 | 3bitr4ri | ⊢ ( ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 21 | 20 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 22 | 14 21 | bitr2i | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) |
| 23 | 7 13 22 | vtocl2g | ⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |