This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.123b | |- ( ( A e. V /\ B e. W ) -> ( ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ E. z E. w ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sbc5g | |- ( ( A e. V /\ B e. W ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
| 3 | nfa1 | |- F/ z A. z A. w ( ph -> ( z = A /\ w = B ) ) |
|
| 4 | nfa2 | |- F/ w A. z A. w ( ph -> ( z = A /\ w = B ) ) |
|
| 5 | simpr | |- ( ( ( z = A /\ w = B ) /\ ph ) -> ph ) |
|
| 6 | 2sp | |- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ph -> ( z = A /\ w = B ) ) ) |
|
| 7 | 6 | ancrd | |- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ph -> ( ( z = A /\ w = B ) /\ ph ) ) ) |
| 8 | 5 7 | impbid2 | |- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ( ( z = A /\ w = B ) /\ ph ) <-> ph ) ) |
| 9 | 4 8 | exbid | |- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. w ph ) ) |
| 10 | 3 9 | exbid | |- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. z E. w ph ) ) |
| 11 | 10 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. z E. w ph ) ) |
| 12 | 2 11 | bitr3d | |- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( [. A / z ]. [. B / w ]. ph <-> E. z E. w ph ) ) |
| 13 | 12 | pm5.32da | |- ( ( A e. V /\ B e. W ) -> ( ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ E. z E. w ph ) ) ) |