This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.122b | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 2 | 1 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 3 | 2 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 4 | dfsbcq | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 5 | 4 | bibi1d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) ) |
| 7 | sbc5 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) | |
| 8 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) | |
| 9 | simpr | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) | |
| 10 | ancr | ⊢ ( ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | |
| 11 | 10 | sps | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| 12 | 9 11 | impbid2 | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 13 | 8 12 | exbid | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 𝜑 ) ) |
| 14 | 7 13 | bitrid | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 15 | 6 14 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) |
| 16 | 15 | pm5.32d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) |