This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.122b | |- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 2 | 1 | imbi2d | |- ( y = A -> ( ( ph -> x = y ) <-> ( ph -> x = A ) ) ) |
| 3 | 2 | albidv | |- ( y = A -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = A ) ) ) |
| 4 | dfsbcq | |- ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) ) |
|
| 5 | 4 | bibi1d | |- ( y = A -> ( ( [. y / x ]. ph <-> E. x ph ) <-> ( [. A / x ]. ph <-> E. x ph ) ) ) |
| 6 | 3 5 | imbi12d | |- ( y = A -> ( ( A. x ( ph -> x = y ) -> ( [. y / x ]. ph <-> E. x ph ) ) <-> ( A. x ( ph -> x = A ) -> ( [. A / x ]. ph <-> E. x ph ) ) ) ) |
| 7 | sbc5 | |- ( [. y / x ]. ph <-> E. x ( x = y /\ ph ) ) |
|
| 8 | nfa1 | |- F/ x A. x ( ph -> x = y ) |
|
| 9 | simpr | |- ( ( x = y /\ ph ) -> ph ) |
|
| 10 | ancr | |- ( ( ph -> x = y ) -> ( ph -> ( x = y /\ ph ) ) ) |
|
| 11 | 10 | sps | |- ( A. x ( ph -> x = y ) -> ( ph -> ( x = y /\ ph ) ) ) |
| 12 | 9 11 | impbid2 | |- ( A. x ( ph -> x = y ) -> ( ( x = y /\ ph ) <-> ph ) ) |
| 13 | 8 12 | exbid | |- ( A. x ( ph -> x = y ) -> ( E. x ( x = y /\ ph ) <-> E. x ph ) ) |
| 14 | 7 13 | bitrid | |- ( A. x ( ph -> x = y ) -> ( [. y / x ]. ph <-> E. x ph ) ) |
| 15 | 6 14 | vtoclg | |- ( A e. V -> ( A. x ( ph -> x = A ) -> ( [. A / x ]. ph <-> E. x ph ) ) ) |
| 16 | 15 | pm5.32d | |- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |