This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.122a | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 2 | sbc6g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 3 | 2 | bicomd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 3 | anbi2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 5 | 1 4 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |