This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.122a | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim | |- ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ A. x ( x = A -> ph ) ) ) |
|
| 2 | sbc6g | |- ( A e. V -> ( [. A / x ]. ph <-> A. x ( x = A -> ph ) ) ) |
|
| 3 | 2 | bicomd | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> [. A / x ]. ph ) ) |
| 4 | 3 | anbi2d | |- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ A. x ( x = A -> ph ) ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) ) |
| 5 | 1 4 | bitrid | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) ) |