This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.196 in WhiteheadRussell p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.196a | ⊢ ( ¬ 𝜑 ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbelx | ⊢ ( ¬ 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑥 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) | |
| 2 | sbalex | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) | |
| 3 | sbn | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 3 | imbi2i | ⊢ ( ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑦 = 𝑥 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 5 | con2b | ⊢ ( ( 𝑦 = 𝑥 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ 𝑦 = 𝑥 ) ) | |
| 6 | df-ne | ⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥 ) | |
| 7 | 6 | bicomi | ⊢ ( ¬ 𝑦 = 𝑥 ↔ 𝑦 ≠ 𝑥 ) |
| 8 | 7 | imbi2i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ 𝑦 = 𝑥 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
| 9 | 4 5 8 | 3bitri | ⊢ ( ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
| 11 | 1 2 10 | 3bitri | ⊢ ( ¬ 𝜑 ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |