This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.196 in WhiteheadRussell p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.196a | |- ( -. ph <-> A. y ( [ y / x ] ph -> y =/= x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbelx | |- ( -. ph <-> E. y ( y = x /\ [ y / x ] -. ph ) ) |
|
| 2 | sbalex | |- ( E. y ( y = x /\ [ y / x ] -. ph ) <-> A. y ( y = x -> [ y / x ] -. ph ) ) |
|
| 3 | sbn | |- ( [ y / x ] -. ph <-> -. [ y / x ] ph ) |
|
| 4 | 3 | imbi2i | |- ( ( y = x -> [ y / x ] -. ph ) <-> ( y = x -> -. [ y / x ] ph ) ) |
| 5 | con2b | |- ( ( y = x -> -. [ y / x ] ph ) <-> ( [ y / x ] ph -> -. y = x ) ) |
|
| 6 | df-ne | |- ( y =/= x <-> -. y = x ) |
|
| 7 | 6 | bicomi | |- ( -. y = x <-> y =/= x ) |
| 8 | 7 | imbi2i | |- ( ( [ y / x ] ph -> -. y = x ) <-> ( [ y / x ] ph -> y =/= x ) ) |
| 9 | 4 5 8 | 3bitri | |- ( ( y = x -> [ y / x ] -. ph ) <-> ( [ y / x ] ph -> y =/= x ) ) |
| 10 | 9 | albii | |- ( A. y ( y = x -> [ y / x ] -. ph ) <-> A. y ( [ y / x ] ph -> y =/= x ) ) |
| 11 | 1 2 10 | 3bitri | |- ( -. ph <-> A. y ( [ y / x ] ph -> y =/= x ) ) |