This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *11.53 in WhiteheadRussell p. 164. See pm11.53v for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm11.53 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | 3 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜓 |
| 5 | 4 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 6 | 2 5 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |