This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of 19.12 where its converse holds. See 19.12vvv for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 18-Jul-2001) (Revised by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.12vv | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | 3 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜓 |
| 5 | 4 | 19.36 | ⊢ ( ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 6 | 19.36v | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) | |
| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 9 | 8 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝜑 |
| 10 | 9 | 19.21 | ⊢ ( ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 11 | 7 10 | bitr2i | ⊢ ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 12 | 2 5 11 | 3bitri | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |