This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| ply1sclid.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| ply1sclf1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1sclf1 | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | ply1sclid.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | ply1sclf1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | 1 2 3 4 | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |
| 6 | fveq2 | ⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( coe1 ‘ ( 𝐴 ‘ 𝑦 ) ) ) | |
| 7 | 6 | fveq1d | ⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝑥 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝑦 ) ) ‘ 0 ) ) |
| 8 | 1 2 3 | ply1sclid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ) → 𝑥 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑥 ) ) ‘ 0 ) ) |
| 9 | 8 | adantrr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑥 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑥 ) ) ‘ 0 ) ) |
| 10 | 1 2 3 | ply1sclid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ) → 𝑦 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑦 ) ) ‘ 0 ) ) |
| 11 | 10 | adantrl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 = ( ( coe1 ‘ ( 𝐴 ‘ 𝑦 ) ) ‘ 0 ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 = 𝑦 ↔ ( ( coe1 ‘ ( 𝐴 ‘ 𝑥 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝑦 ) ) ‘ 0 ) ) ) |
| 13 | 7 12 | imbitrrid | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 14 | 13 | ralrimivva | ⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 15 | dff13 | ⊢ ( 𝐴 : 𝐾 –1-1→ 𝐵 ↔ ( 𝐴 : 𝐾 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 16 | 5 14 15 | sylanbrc | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 –1-1→ 𝐵 ) |