This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1frcl.q | ⊢ 𝑄 = ran ( 𝑆 evalSub1 𝑅 ) | |
| Assertion | ply1frcl | ⊢ ( 𝑋 ∈ 𝑄 → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1frcl.q | ⊢ 𝑄 = ran ( 𝑆 evalSub1 𝑅 ) | |
| 2 | ne0i | ⊢ ( 𝑋 ∈ ran ( 𝑆 evalSub1 𝑅 ) → ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) | |
| 3 | 2 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝑄 → ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) |
| 4 | rneq | ⊢ ( ( 𝑆 evalSub1 𝑅 ) = ∅ → ran ( 𝑆 evalSub1 𝑅 ) = ran ∅ ) | |
| 5 | rn0 | ⊢ ran ∅ = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ( 𝑆 evalSub1 𝑅 ) = ∅ → ran ( 𝑆 evalSub1 𝑅 ) = ∅ ) |
| 7 | 6 | necon3i | ⊢ ( ran ( 𝑆 evalSub1 𝑅 ) ≠ ∅ → ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ) |
| 8 | n0 | ⊢ ( ( 𝑆 evalSub1 𝑅 ) ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) ) | |
| 9 | df-evls1 | ⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) | |
| 10 | 9 | dmmpossx | ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) |
| 11 | elfvdm | ⊢ ( 𝑒 ∈ ( evalSub1 ‘ 〈 𝑆 , 𝑅 〉 ) → 〈 𝑆 , 𝑅 〉 ∈ dom evalSub1 ) | |
| 12 | df-ov | ⊢ ( 𝑆 evalSub1 𝑅 ) = ( evalSub1 ‘ 〈 𝑆 , 𝑅 〉 ) | |
| 13 | 11 12 | eleq2s | ⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → 〈 𝑆 , 𝑅 〉 ∈ dom evalSub1 ) |
| 14 | 10 13 | sselid | ⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → 〈 𝑆 , 𝑅 〉 ∈ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 16 | 15 | pweqd | ⊢ ( 𝑠 = 𝑆 → 𝒫 ( Base ‘ 𝑠 ) = 𝒫 ( Base ‘ 𝑆 ) ) |
| 17 | 16 | opeliunxp2 | ⊢ ( 〈 𝑆 , 𝑅 〉 ∈ ∪ 𝑠 ∈ V ( { 𝑠 } × 𝒫 ( Base ‘ 𝑠 ) ) ↔ ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
| 18 | 14 17 | sylib | ⊢ ( 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑒 𝑒 ∈ ( 𝑆 evalSub1 𝑅 ) → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
| 20 | 8 19 | sylbi | ⊢ ( ( 𝑆 evalSub1 𝑅 ) ≠ ∅ → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |
| 21 | 3 7 20 | 3syl | ⊢ ( 𝑋 ∈ 𝑄 → ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 ( Base ‘ 𝑆 ) ) ) |