This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two polynomials over the same ring are equal iff they have identical coefficients. (Contributed by AV, 13-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqcoe1ply1eq.p | |- P = ( Poly1 ` R ) |
|
| eqcoe1ply1eq.b | |- B = ( Base ` P ) |
||
| eqcoe1ply1eq.a | |- A = ( coe1 ` K ) |
||
| eqcoe1ply1eq.c | |- C = ( coe1 ` L ) |
||
| Assertion | ply1coe1eq | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) <-> K = L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcoe1ply1eq.p | |- P = ( Poly1 ` R ) |
|
| 2 | eqcoe1ply1eq.b | |- B = ( Base ` P ) |
|
| 3 | eqcoe1ply1eq.a | |- A = ( coe1 ` K ) |
|
| 4 | eqcoe1ply1eq.c | |- C = ( coe1 ` L ) |
|
| 5 | 1 2 3 4 | eqcoe1ply1eq | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> K = L ) ) |
| 6 | fveq2 | |- ( K = L -> ( coe1 ` K ) = ( coe1 ` L ) ) |
|
| 7 | 6 | adantl | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> ( coe1 ` K ) = ( coe1 ` L ) ) |
| 8 | 7 3 4 | 3eqtr4g | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> A = C ) |
| 9 | 8 | adantr | |- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) /\ k e. NN0 ) -> A = C ) |
| 10 | 9 | fveq1d | |- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) /\ k e. NN0 ) -> ( A ` k ) = ( C ` k ) ) |
| 11 | 10 | ralrimiva | |- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> A. k e. NN0 ( A ` k ) = ( C ` k ) ) |
| 12 | 11 | ex | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K = L -> A. k e. NN0 ( A ` k ) = ( C ` k ) ) ) |
| 13 | 5 12 | impbid | |- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) <-> K = L ) ) |