This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| ascl0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ascl0.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| ascl0.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | ||
| Assertion | ascl0 | ⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | ascl0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | ascl0.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | ascl0.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | |
| 5 | 2 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 8 | 6 7 | grpidcl | ⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 9 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 11 | 1 2 6 9 10 | asclval | ⊢ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 12 | 3 5 8 11 | 4syl | ⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 14 | 13 10 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 17 | 13 2 9 7 16 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 18 | 3 15 17 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 19 | 12 18 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝑊 ) ) |