This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ple1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ple1.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| ple1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| ple1.1 | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| ple1.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| ple1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ple1.d | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑈 ) | ||
| Assertion | ple1 | ⊢ ( 𝜑 → 𝑋 ≤ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ple1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ple1.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | ple1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 4 | ple1.1 | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 5 | ple1.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | ple1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ple1.d | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑈 ) | |
| 8 | 1 3 2 5 7 6 | luble | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑈 ‘ 𝐵 ) ) |
| 9 | 1 2 4 | p1val | ⊢ ( 𝐾 ∈ 𝑉 → 1 = ( 𝑈 ‘ 𝐵 ) ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 1 = ( 𝑈 ‘ 𝐵 ) ) |
| 11 | 8 10 | breqtrrd | ⊢ ( 𝜑 → 𝑋 ≤ 1 ) |