This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p1val.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| p1val.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| p1val.t | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | p1val | ⊢ ( 𝐾 ∈ 𝑉 → 1 = ( 𝑈 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1val.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | p1val.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | p1val.t | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 4 | elex | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( lub ‘ 𝑘 ) = ( lub ‘ 𝐾 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( lub ‘ 𝑘 ) = 𝑈 ) |
| 7 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 9 | 6 8 | fveq12d | ⊢ ( 𝑘 = 𝐾 → ( ( lub ‘ 𝑘 ) ‘ ( Base ‘ 𝑘 ) ) = ( 𝑈 ‘ 𝐵 ) ) |
| 10 | df-p1 | ⊢ 1. = ( 𝑘 ∈ V ↦ ( ( lub ‘ 𝑘 ) ‘ ( Base ‘ 𝑘 ) ) ) | |
| 11 | fvex | ⊢ ( 𝑈 ‘ 𝐵 ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝐾 ∈ V → ( 1. ‘ 𝐾 ) = ( 𝑈 ‘ 𝐵 ) ) |
| 13 | 3 12 | eqtrid | ⊢ ( 𝐾 ∈ V → 1 = ( 𝑈 ‘ 𝐵 ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝐾 ∈ 𝑉 → 1 = ( 𝑈 ‘ 𝐵 ) ) |