This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoi0 | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjrn | ⊢ ( 𝐺 ∈ Cℋ → ran ( projℎ ‘ 𝐺 ) = 𝐺 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ran ( projℎ ‘ 𝐺 ) = 𝐺 ) |
| 3 | pjrn | ⊢ ( 𝐻 ∈ Cℋ → ran ( projℎ ‘ 𝐻 ) = 𝐻 ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) |
| 6 | 2 5 | sseq12d | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ( ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ↔ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) |
| 7 | 6 | biimpar | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) |
| 8 | 7 | 3adantl3 | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) |
| 9 | id | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Cℋ ) | |
| 10 | 3 9 | eqeltrd | ⊢ ( 𝐻 ∈ Cℋ → ran ( projℎ ‘ 𝐻 ) ∈ Cℋ ) |
| 11 | chsh | ⊢ ( ran ( projℎ ‘ 𝐻 ) ∈ Cℋ → ran ( projℎ ‘ 𝐻 ) ∈ Sℋ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐻 ∈ Cℋ → ran ( projℎ ‘ 𝐻 ) ∈ Sℋ ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ran ( projℎ ‘ 𝐻 ) ∈ Sℋ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) → ran ( projℎ ‘ 𝐻 ) ∈ Sℋ ) |
| 15 | simpr | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) → ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) | |
| 16 | pjfn | ⊢ ( 𝐺 ∈ Cℋ → ( projℎ ‘ 𝐺 ) Fn ℋ ) | |
| 17 | fnfvelrn | ⊢ ( ( ( projℎ ‘ 𝐺 ) Fn ℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ) |
| 20 | pjfn | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) Fn ℋ ) | |
| 21 | fnfvelrn | ⊢ ( ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) | |
| 22 | 20 21 | sylan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) |
| 23 | 22 | 3adant1 | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) |
| 24 | 19 23 | jca | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) ) |
| 26 | shorth | ⊢ ( ran ( projℎ ‘ 𝐻 ) ∈ Sℋ → ( ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐺 ) ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ran ( projℎ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) ) ) | |
| 27 | 14 15 25 26 | syl3c | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ ran ( projℎ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ran ( projℎ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
| 28 | 8 27 | syldan | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |