This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vectors belonging to the orthocomplemented subspace of a projection. Second part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjocvec | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 2 | chss | ⊢ ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) |
| 4 | sseqin2 | ⊢ ( ( ⊥ ‘ 𝐻 ) ⊆ ℋ ↔ ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) |
| 6 | pjoc2 | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) | |
| 7 | 6 | rabbi2dva | ⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ } ) |
| 8 | 5 7 | eqtr3d | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ } ) |