This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vectors belonging to the orthocomplemented subspace of a projection. Second part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjocvec | |- ( H e. CH -> ( _|_ ` H ) = { x e. ~H | ( ( projh ` H ) ` x ) = 0h } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( H e. CH -> ( _|_ ` H ) e. CH ) |
|
| 2 | chss | |- ( ( _|_ ` H ) e. CH -> ( _|_ ` H ) C_ ~H ) |
|
| 3 | 1 2 | syl | |- ( H e. CH -> ( _|_ ` H ) C_ ~H ) |
| 4 | sseqin2 | |- ( ( _|_ ` H ) C_ ~H <-> ( ~H i^i ( _|_ ` H ) ) = ( _|_ ` H ) ) |
|
| 5 | 3 4 | sylib | |- ( H e. CH -> ( ~H i^i ( _|_ ` H ) ) = ( _|_ ` H ) ) |
| 6 | pjoc2 | |- ( ( H e. CH /\ x e. ~H ) -> ( x e. ( _|_ ` H ) <-> ( ( projh ` H ) ` x ) = 0h ) ) |
|
| 7 | 6 | rabbi2dva | |- ( H e. CH -> ( ~H i^i ( _|_ ` H ) ) = { x e. ~H | ( ( projh ` H ) ` x ) = 0h } ) |
| 8 | 5 7 | eqtr3d | |- ( H e. CH -> ( _|_ ` H ) = { x e. ~H | ( ( projh ` H ) ` x ) = 0h } ) |