This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 6-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoc1 | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( 𝐴 ∈ 𝐻 ↔ 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) | |
| 2 | 2fveq3 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ) | |
| 3 | 2 | fveq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ) |
| 5 | 1 4 | bibi12d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) ↔ ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ) ) |
| 6 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) | |
| 7 | fveqeq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) | |
| 8 | 6 7 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) ) |
| 9 | ifchhv | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ | |
| 10 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 11 | 9 10 | pjoc1i | ⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) |
| 12 | 5 8 11 | dedth2h | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) ) |