This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the projection map. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhfval | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) = ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ℎ = 𝐻 → ℎ = 𝐻 ) | |
| 2 | fveq2 | ⊢ ( ℎ = 𝐻 → ( ⊥ ‘ ℎ ) = ( ⊥ ‘ 𝐻 ) ) | |
| 3 | 2 | rexeqdv | ⊢ ( ℎ = 𝐻 → ( ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ↔ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 4 | 1 3 | riotaeqbidv | ⊢ ( ℎ = 𝐻 → ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) = ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 5 | 4 | mpteq2dv | ⊢ ( ℎ = 𝐻 → ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |
| 6 | df-pjh | ⊢ projℎ = ( ℎ ∈ Cℋ ↦ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) | |
| 7 | ax-hilex | ⊢ ℋ ∈ V | |
| 8 | 7 | mptex | ⊢ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ∈ V |
| 9 | 5 6 8 | fvmpt | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) = ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |