This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a projection. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhval | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhfval | |- ( H e. CH -> ( projh ` H ) = ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( H e. CH -> ( ( projh ` H ) ` A ) = ( ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) ` A ) ) |
| 3 | eqeq1 | |- ( z = A -> ( z = ( x +h y ) <-> A = ( x +h y ) ) ) |
|
| 4 | 3 | rexbidv | |- ( z = A -> ( E. y e. ( _|_ ` H ) z = ( x +h y ) <-> E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 5 | 4 | riotabidv | |- ( z = A -> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 6 | eqid | |- ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) = ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) |
|
| 7 | riotaex | |- ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( A e. ~H -> ( ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |
| 9 | 2 8 | sylan9eq | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) ) |