This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjinormi | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 5 | 2fveq3 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
| 7 | 4 6 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) |
| 8 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 9 | 1 8 | pjinormii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) |
| 10 | 7 9 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |