This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1rid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝐺 ∈ Grp ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 14 | 13 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 15 | sselda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 17 | 13 1 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 0 + 𝑋 ) = 𝑋 ) |
| 18 | 12 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 0 + 𝑋 ) = 𝑋 ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 = ( 0 + 𝑋 ) ) |
| 20 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 23 | 2 | lsmub2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 24 | 5 6 23 | syl2anc | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 25 | 24 | sselda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 26 | 3 | subg0cl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
| 27 | 10 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 0 ∈ 𝑇 ) |
| 28 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 29 | 1 2 3 4 10 20 21 22 9 25 27 28 | pj1eq | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 = ( 0 + 𝑋 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 0 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝑋 ) ) ) |
| 30 | 19 29 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 0 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝑋 ) ) |
| 31 | 30 | simpld | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 0 ) |