This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the left projection function, which takes two subgroups t , u with trivial intersection and returns a function mapping the elements of the subgroup sum t + u to their projections onto t . (The other projection function can be obtained by swapping the roles of t and u .) (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pj1 | ⊢ proj1 = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpj1 | ⊢ proj1 | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | vu | ⊢ 𝑢 | |
| 9 | vz | ⊢ 𝑧 | |
| 10 | 3 | cv | ⊢ 𝑡 |
| 11 | clsm | ⊢ LSSum | |
| 12 | 5 11 | cfv | ⊢ ( LSSum ‘ 𝑤 ) |
| 13 | 8 | cv | ⊢ 𝑢 |
| 14 | 10 13 12 | co | ⊢ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) |
| 15 | vx | ⊢ 𝑥 | |
| 16 | vy | ⊢ 𝑦 | |
| 17 | 9 | cv | ⊢ 𝑧 |
| 18 | 15 | cv | ⊢ 𝑥 |
| 19 | cplusg | ⊢ +g | |
| 20 | 5 19 | cfv | ⊢ ( +g ‘ 𝑤 ) |
| 21 | 16 | cv | ⊢ 𝑦 |
| 22 | 18 21 20 | co | ⊢ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 23 | 17 22 | wceq | ⊢ 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 24 | 23 16 13 | wrex | ⊢ ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 25 | 24 15 10 | crio | ⊢ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) |
| 26 | 9 14 25 | cmpt | ⊢ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) |
| 27 | 3 8 7 7 26 | cmpo | ⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |
| 28 | 1 2 27 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |
| 29 | 0 28 | wceq | ⊢ proj1 = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |