This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isph.1 | |- X = ( BaseSet ` U ) |
|
| isph.2 | |- G = ( +v ` U ) |
||
| isph.3 | |- M = ( -v ` U ) |
||
| isph.6 | |- N = ( normCV ` U ) |
||
| Assertion | phpar2 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isph.1 | |- X = ( BaseSet ` U ) |
|
| 2 | isph.2 | |- G = ( +v ` U ) |
|
| 3 | isph.3 | |- M = ( -v ` U ) |
|
| 4 | isph.6 | |- N = ( normCV ` U ) |
|
| 5 | 1 2 3 4 | isph | |- ( U e. CPreHilOLD <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) |
| 6 | 5 | simprbi | |- ( U e. CPreHilOLD -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 8 | fvoveq1 | |- ( x = A -> ( N ` ( x G y ) ) = ( N ` ( A G y ) ) ) |
|
| 9 | 8 | oveq1d | |- ( x = A -> ( ( N ` ( x G y ) ) ^ 2 ) = ( ( N ` ( A G y ) ) ^ 2 ) ) |
| 10 | fvoveq1 | |- ( x = A -> ( N ` ( x M y ) ) = ( N ` ( A M y ) ) ) |
|
| 11 | 10 | oveq1d | |- ( x = A -> ( ( N ` ( x M y ) ) ^ 2 ) = ( ( N ` ( A M y ) ) ^ 2 ) ) |
| 12 | 9 11 | oveq12d | |- ( x = A -> ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A M y ) ) ^ 2 ) ) ) |
| 13 | fveq2 | |- ( x = A -> ( N ` x ) = ( N ` A ) ) |
|
| 14 | 13 | oveq1d | |- ( x = A -> ( ( N ` x ) ^ 2 ) = ( ( N ` A ) ^ 2 ) ) |
| 15 | 14 | oveq1d | |- ( x = A -> ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) |
| 16 | 15 | oveq2d | |- ( x = A -> ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 17 | 12 16 | eqeq12d | |- ( x = A -> ( ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) |
| 18 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 19 | 18 | fveq2d | |- ( y = B -> ( N ` ( A G y ) ) = ( N ` ( A G B ) ) ) |
| 20 | 19 | oveq1d | |- ( y = B -> ( ( N ` ( A G y ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 21 | oveq2 | |- ( y = B -> ( A M y ) = ( A M B ) ) |
|
| 22 | 21 | fveq2d | |- ( y = B -> ( N ` ( A M y ) ) = ( N ` ( A M B ) ) ) |
| 23 | 22 | oveq1d | |- ( y = B -> ( ( N ` ( A M y ) ) ^ 2 ) = ( ( N ` ( A M B ) ) ^ 2 ) ) |
| 24 | 20 23 | oveq12d | |- ( y = B -> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A M y ) ) ^ 2 ) ) = ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) ) |
| 25 | fveq2 | |- ( y = B -> ( N ` y ) = ( N ` B ) ) |
|
| 26 | 25 | oveq1d | |- ( y = B -> ( ( N ` y ) ^ 2 ) = ( ( N ` B ) ^ 2 ) ) |
| 27 | 26 | oveq2d | |- ( y = B -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |
| 28 | 27 | oveq2d | |- ( y = B -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| 29 | 24 28 | eqeq12d | |- ( y = B -> ( ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 30 | 17 29 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 31 | 30 | 3adant1 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 32 | 7 31 | mpd | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A M B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |