This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phpar.1 | |- X = ( BaseSet ` U ) |
|
| phpar.2 | |- G = ( +v ` U ) |
||
| phpar.4 | |- S = ( .sOLD ` U ) |
||
| phpar.6 | |- N = ( normCV ` U ) |
||
| Assertion | phpar | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phpar.1 | |- X = ( BaseSet ` U ) |
|
| 2 | phpar.2 | |- G = ( +v ` U ) |
|
| 3 | phpar.4 | |- S = ( .sOLD ` U ) |
|
| 4 | phpar.6 | |- N = ( normCV ` U ) |
|
| 5 | 2 | fvexi | |- G e. _V |
| 6 | 3 | fvexi | |- S e. _V |
| 7 | 4 | fvexi | |- N e. _V |
| 8 | 5 6 7 | 3pm3.2i | |- ( G e. _V /\ S e. _V /\ N e. _V ) |
| 9 | 2 3 4 | phop | |- ( U e. CPreHilOLD -> U = <. <. G , S >. , N >. ) |
| 10 | 9 | eleq1d | |- ( U e. CPreHilOLD -> ( U e. CPreHilOLD <-> <. <. G , S >. , N >. e. CPreHilOLD ) ) |
| 11 | 10 | ibi | |- ( U e. CPreHilOLD -> <. <. G , S >. , N >. e. CPreHilOLD ) |
| 12 | 1 2 | bafval | |- X = ran G |
| 13 | 12 | isphg | |- ( ( G e. _V /\ S e. _V /\ N e. _V ) -> ( <. <. G , S >. , N >. e. CPreHilOLD <-> ( <. <. G , S >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) |
| 14 | 13 | simplbda | |- ( ( ( G e. _V /\ S e. _V /\ N e. _V ) /\ <. <. G , S >. , N >. e. CPreHilOLD ) -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 15 | 8 11 14 | sylancr | |- ( U e. CPreHilOLD -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 17 | fvoveq1 | |- ( x = A -> ( N ` ( x G y ) ) = ( N ` ( A G y ) ) ) |
|
| 18 | 17 | oveq1d | |- ( x = A -> ( ( N ` ( x G y ) ) ^ 2 ) = ( ( N ` ( A G y ) ) ^ 2 ) ) |
| 19 | fvoveq1 | |- ( x = A -> ( N ` ( x G ( -u 1 S y ) ) ) = ( N ` ( A G ( -u 1 S y ) ) ) ) |
|
| 20 | 19 | oveq1d | |- ( x = A -> ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) |
| 21 | 18 20 | oveq12d | |- ( x = A -> ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) ) |
| 22 | fveq2 | |- ( x = A -> ( N ` x ) = ( N ` A ) ) |
|
| 23 | 22 | oveq1d | |- ( x = A -> ( ( N ` x ) ^ 2 ) = ( ( N ` A ) ^ 2 ) ) |
| 24 | 23 | oveq1d | |- ( x = A -> ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) |
| 25 | 24 | oveq2d | |- ( x = A -> ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
| 26 | 21 25 | eqeq12d | |- ( x = A -> ( ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) |
| 27 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 28 | 27 | fveq2d | |- ( y = B -> ( N ` ( A G y ) ) = ( N ` ( A G B ) ) ) |
| 29 | 28 | oveq1d | |- ( y = B -> ( ( N ` ( A G y ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 30 | oveq2 | |- ( y = B -> ( -u 1 S y ) = ( -u 1 S B ) ) |
|
| 31 | 30 | oveq2d | |- ( y = B -> ( A G ( -u 1 S y ) ) = ( A G ( -u 1 S B ) ) ) |
| 32 | 31 | fveq2d | |- ( y = B -> ( N ` ( A G ( -u 1 S y ) ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 33 | 32 | oveq1d | |- ( y = B -> ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 34 | 29 33 | oveq12d | |- ( y = B -> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 35 | fveq2 | |- ( y = B -> ( N ` y ) = ( N ` B ) ) |
|
| 36 | 35 | oveq1d | |- ( y = B -> ( ( N ` y ) ^ 2 ) = ( ( N ` B ) ^ 2 ) ) |
| 37 | 36 | oveq2d | |- ( y = B -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |
| 38 | 37 | oveq2d | |- ( y = B -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| 39 | 34 38 | eqeq12d | |- ( y = B -> ( ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 40 | 26 39 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 41 | 40 | 3adant1 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 42 | 16 41 | mpd | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |