This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a prefix operation. This theorem should only be used in proofs if L e. NN0 is not available. Otherwise (and usually), pfxval should be used. (Contributed by AV, 3-Dec-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxval0 | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxval | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) | |
| 2 | simpr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) | |
| 3 | 2 | con3i | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
| 5 | pfxnndmnd | ⊢ ( ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ∅ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ∅ ) |
| 7 | simpr | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) | |
| 8 | 7 | con3i | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ¬ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) |
| 9 | swrdnnn0nd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ∅ ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ∅ ) |
| 11 | 6 10 | eqtr4d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| 12 | 1 11 | pm2.61dan | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |