This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxnd0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 | elfz2nn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 4 | 3 | a1i | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 5 | 4 | notbid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 6 | 3ianor | ⊢ ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 7 | 6 | a1i | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 2 5 7 | 3bitrd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | 3orrot | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) | |
| 10 | 3orass | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) ) | |
| 11 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 12 | 11 | pm2.24d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 13 | 12 | com12 | ⊢ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 14 | simpr | ⊢ ( ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) | |
| 15 | pfxnndmnd | ⊢ ( ¬ ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) | |
| 16 | 14 15 | nsyl5 | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) |
| 17 | 16 | a1d | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 18 | notnotb | ⊢ ( 𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0 ) | |
| 19 | 11 | nn0red | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 20 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 21 | ltnle | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 23 | pfxnd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) | |
| 24 | 23 | 3expia | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 25 | 22 24 | sylbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 26 | 25 | expcom | ⊢ ( 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 27 | 26 | com23 | ⊢ ( 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 28 | 18 27 | sylbir | ⊢ ( ¬ ¬ 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 30 | 17 29 | jaoi3 | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 31 | 30 | orcoms | ⊢ ( ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 32 | 13 31 | jaoi | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 33 | 10 32 | sylbi | ⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 34 | 9 33 | sylbi | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 35 | 34 | com12 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 36 | 8 35 | sylbid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 37 | 36 | imp | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |