This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxnd0 | |- ( ( W e. Word V /\ L e/ ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( L e/ ( 0 ... ( # ` W ) ) <-> -. L e. ( 0 ... ( # ` W ) ) ) |
|
| 2 | 1 | a1i | |- ( W e. Word V -> ( L e/ ( 0 ... ( # ` W ) ) <-> -. L e. ( 0 ... ( # ` W ) ) ) ) |
| 3 | elfz2nn0 | |- ( L e. ( 0 ... ( # ` W ) ) <-> ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) ) |
|
| 4 | 3 | a1i | |- ( W e. Word V -> ( L e. ( 0 ... ( # ` W ) ) <-> ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) ) ) |
| 5 | 4 | notbid | |- ( W e. Word V -> ( -. L e. ( 0 ... ( # ` W ) ) <-> -. ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) ) ) |
| 6 | 3ianor | |- ( -. ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) <-> ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) ) |
|
| 7 | 6 | a1i | |- ( W e. Word V -> ( -. ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) <-> ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) ) ) |
| 8 | 2 5 7 | 3bitrd | |- ( W e. Word V -> ( L e/ ( 0 ... ( # ` W ) ) <-> ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) ) ) |
| 9 | 3orrot | |- ( ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) <-> ( -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) \/ -. L e. NN0 ) ) |
|
| 10 | 3orass | |- ( ( -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) \/ -. L e. NN0 ) <-> ( -. ( # ` W ) e. NN0 \/ ( -. L <_ ( # ` W ) \/ -. L e. NN0 ) ) ) |
|
| 11 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 12 | 11 | pm2.24d | |- ( W e. Word V -> ( -. ( # ` W ) e. NN0 -> ( W prefix L ) = (/) ) ) |
| 13 | 12 | com12 | |- ( -. ( # ` W ) e. NN0 -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 14 | simpr | |- ( ( W e. _V /\ L e. NN0 ) -> L e. NN0 ) |
|
| 15 | pfxnndmnd | |- ( -. ( W e. _V /\ L e. NN0 ) -> ( W prefix L ) = (/) ) |
|
| 16 | 14 15 | nsyl5 | |- ( -. L e. NN0 -> ( W prefix L ) = (/) ) |
| 17 | 16 | a1d | |- ( -. L e. NN0 -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 18 | notnotb | |- ( L e. NN0 <-> -. -. L e. NN0 ) |
|
| 19 | 11 | nn0red | |- ( W e. Word V -> ( # ` W ) e. RR ) |
| 20 | nn0re | |- ( L e. NN0 -> L e. RR ) |
|
| 21 | ltnle | |- ( ( ( # ` W ) e. RR /\ L e. RR ) -> ( ( # ` W ) < L <-> -. L <_ ( # ` W ) ) ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( W e. Word V /\ L e. NN0 ) -> ( ( # ` W ) < L <-> -. L <_ ( # ` W ) ) ) |
| 23 | pfxnd | |- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W prefix L ) = (/) ) |
|
| 24 | 23 | 3expia | |- ( ( W e. Word V /\ L e. NN0 ) -> ( ( # ` W ) < L -> ( W prefix L ) = (/) ) ) |
| 25 | 22 24 | sylbird | |- ( ( W e. Word V /\ L e. NN0 ) -> ( -. L <_ ( # ` W ) -> ( W prefix L ) = (/) ) ) |
| 26 | 25 | expcom | |- ( L e. NN0 -> ( W e. Word V -> ( -. L <_ ( # ` W ) -> ( W prefix L ) = (/) ) ) ) |
| 27 | 26 | com23 | |- ( L e. NN0 -> ( -. L <_ ( # ` W ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) ) |
| 28 | 18 27 | sylbir | |- ( -. -. L e. NN0 -> ( -. L <_ ( # ` W ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) ) |
| 29 | 28 | imp | |- ( ( -. -. L e. NN0 /\ -. L <_ ( # ` W ) ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 30 | 17 29 | jaoi3 | |- ( ( -. L e. NN0 \/ -. L <_ ( # ` W ) ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 31 | 30 | orcoms | |- ( ( -. L <_ ( # ` W ) \/ -. L e. NN0 ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 32 | 13 31 | jaoi | |- ( ( -. ( # ` W ) e. NN0 \/ ( -. L <_ ( # ` W ) \/ -. L e. NN0 ) ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 33 | 10 32 | sylbi | |- ( ( -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) \/ -. L e. NN0 ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 34 | 9 33 | sylbi | |- ( ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) -> ( W e. Word V -> ( W prefix L ) = (/) ) ) |
| 35 | 34 | com12 | |- ( W e. Word V -> ( ( -. L e. NN0 \/ -. ( # ` W ) e. NN0 \/ -. L <_ ( # ` W ) ) -> ( W prefix L ) = (/) ) ) |
| 36 | 8 35 | sylbid | |- ( W e. Word V -> ( L e/ ( 0 ... ( # ` W ) ) -> ( W prefix L ) = (/) ) ) |
| 37 | 36 | imp | |- ( ( W e. Word V /\ L e/ ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) = (/) ) |