This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfx1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 prefix 1 ) = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 1 | a1i | ⊢ ( 𝑊 ≠ ∅ → 1 ∈ ℕ0 ) |
| 3 | pfxval | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑊 prefix 1 ) = ( 𝑊 substr 〈 0 , 1 〉 ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 prefix 1 ) = ( 𝑊 substr 〈 0 , 1 〉 ) ) |
| 5 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 6 | 5 | opeq2i | ⊢ 〈 0 , 1 〉 = 〈 0 , ( 0 + 1 ) 〉 |
| 7 | 6 | oveq2i | ⊢ ( 𝑊 substr 〈 0 , 1 〉 ) = ( 𝑊 substr 〈 0 , ( 0 + 1 ) 〉 ) |
| 8 | 7 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 0 , 1 〉 ) = ( 𝑊 substr 〈 0 , ( 0 + 1 ) 〉 ) ) |
| 9 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 10 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 12 | swrds1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 0 , ( 0 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) | |
| 13 | 11 12 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 0 , ( 0 + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
| 14 | 4 8 13 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 prefix 1 ) = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |