This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrd00 | ⊢ ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ ( V × ( ℤ × ℤ ) ) ↔ ( 𝑆 ∈ V ∧ 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ) ) | |
| 2 | opelxp | ⊢ ( 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ↔ ( 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) ) | |
| 3 | swrdval | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) ) | |
| 4 | fzo0 | ⊢ ( 𝑋 ..^ 𝑋 ) = ∅ | |
| 5 | 0ss | ⊢ ∅ ⊆ dom 𝑆 | |
| 6 | 4 5 | eqsstri | ⊢ ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 |
| 7 | 6 | iftruei | ⊢ if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 8 | zcn | ⊢ ( 𝑋 ∈ ℤ → 𝑋 ∈ ℂ ) | |
| 9 | 8 | subidd | ⊢ ( 𝑋 ∈ ℤ → ( 𝑋 − 𝑋 ) = 0 ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑋 ∈ ℤ → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ( 0 ..^ 0 ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ( 0 ..^ 0 ) ) |
| 12 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ∅ ) |
| 14 | 13 | mpteq1d | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) ) |
| 15 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ∅ | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ∅ ) |
| 17 | 7 16 | eqtrid | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) = ∅ ) |
| 18 | 3 17 | eqtrd | ⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 19 | 18 | 3expb | ⊢ ( ( 𝑆 ∈ V ∧ ( 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 20 | 2 19 | sylan2b | ⊢ ( ( 𝑆 ∈ V ∧ 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 21 | 1 20 | sylbi | ⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ ( V × ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 22 | df-substr | ⊢ substr = ( 𝑠 ∈ V , 𝑏 ∈ ( ℤ × ℤ ) ↦ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ) | |
| 23 | ovex | ⊢ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ∈ V | |
| 24 | 23 | mptex | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) ∈ V |
| 25 | 0ex | ⊢ ∅ ∈ V | |
| 26 | 24 25 | ifex | ⊢ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ∈ V |
| 27 | 22 26 | dmmpo | ⊢ dom substr = ( V × ( ℤ × ℤ ) ) |
| 28 | 21 27 | eleq2s | ⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 29 | df-ov | ⊢ ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ( substr ‘ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ) | |
| 30 | ndmfv | ⊢ ( ¬ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( substr ‘ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ) = ∅ ) | |
| 31 | 29 30 | eqtrid | ⊢ ( ¬ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
| 32 | 28 31 | pm2.61i | ⊢ ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ |