This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity is a polynomial function. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pf1const.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| pf1const.q | ⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) | ||
| Assertion | pf1id | ⊢ ( 𝑅 ∈ CRing → ( I ↾ 𝐵 ) ∈ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pf1const.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | pf1const.q | ⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) | |
| 5 | 3 4 1 | evl1var | ⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) = ( I ↾ 𝐵 ) ) |
| 6 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) | |
| 8 | 3 6 7 1 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 11 | 9 10 | rhmf | ⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 12 | ffn | ⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | |
| 13 | 8 11 12 | 3syl | ⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 14 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 15 | 4 6 9 | vr1cl | ⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 16 | 14 15 | syl | ⊢ ( 𝑅 ∈ CRing → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 17 | fnfvelrn | ⊢ ( ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( 𝑅 ∈ CRing → ( ( eval1 ‘ 𝑅 ) ‘ ( var1 ‘ 𝑅 ) ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
| 19 | 5 18 | eqeltrrd | ⊢ ( 𝑅 ∈ CRing → ( I ↾ 𝐵 ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
| 20 | 19 2 | eleqtrrdi | ⊢ ( 𝑅 ∈ CRing → ( I ↾ 𝐵 ) ∈ 𝑄 ) |