This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres , disjALTVinidres and eqvrel1cossinidres . (Contributed by Peter Mazsa, 31-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | petinidres | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ErALTV 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petinidres2 | ⊢ ( ( Disj ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( I ↾ 𝐴 ) ) / ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 2 | dfpart2 | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) Part 𝐴 ↔ ( Disj ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( I ↾ 𝐴 ) ) / ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 3 | dferALTV2 | ⊢ ( ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ErALTV 𝐴 ↔ ( EqvRel ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 4 | 1 2 3 | 3bitr4i | ⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ErALTV 𝐴 ) |