This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B and C are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossinidres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 = 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossinres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 I 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 I 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) | |
| 2 | ideq2 | ⊢ ( 𝑢 ∈ V → ( 𝑢 I 𝐵 ↔ 𝑢 = 𝐵 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 I 𝐵 ↔ 𝑢 = 𝐵 ) |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑢 I 𝐵 ∧ 𝑢 𝑅 𝐵 ) ↔ ( 𝑢 = 𝐵 ∧ 𝑢 𝑅 𝐵 ) ) |
| 5 | ideq2 | ⊢ ( 𝑢 ∈ V → ( 𝑢 I 𝐶 ↔ 𝑢 = 𝐶 ) ) | |
| 6 | 5 | elv | ⊢ ( 𝑢 I 𝐶 ↔ 𝑢 = 𝐶 ) |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑢 I 𝐶 ∧ 𝑢 𝑅 𝐶 ) ↔ ( 𝑢 = 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) |
| 8 | 4 7 | anbi12i | ⊢ ( ( ( 𝑢 I 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 I 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ↔ ( ( 𝑢 = 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 I 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 I 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 = 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) |
| 10 | 1 9 | bitrdi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝐶 ↔ ∃ 𝑢 ∈ 𝐴 ( ( 𝑢 = 𝐵 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑢 𝑅 𝐶 ) ) ) ) |