This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum. ( unss12 analog.) (Contributed by NM, 7-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddss12 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝐾 ∈ 𝐵 ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 5 | sstr | ⊢ ( ( 𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴 ) → 𝑍 ⊆ 𝐴 ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊 ) → 𝑍 ⊆ 𝐴 ) |
| 7 | 6 | ad2ant2l | ⊢ ( ( ( 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑍 ⊆ 𝐴 ) |
| 8 | 7 | 3adantl1 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑍 ⊆ 𝐴 ) |
| 9 | 3 4 8 | 3jca | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) |
| 10 | simprl | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑋 ⊆ 𝑌 ) | |
| 11 | 1 2 | paddss1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑋 ⊆ 𝑌 → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) ) |
| 12 | 9 10 11 | sylc | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) |
| 13 | 1 2 | paddss2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 ⊆ 𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑍 ⊆ 𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑊 ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
| 16 | 15 | adantrl | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
| 17 | 12 16 | sstrd | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |