This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum. ( unss12 analog.) (Contributed by NM, 7-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
| padd0.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddss12 | |- ( ( K e. B /\ Y C_ A /\ W C_ A ) -> ( ( X C_ Y /\ Z C_ W ) -> ( X .+ Z ) C_ ( Y .+ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | |- A = ( Atoms ` K ) |
|
| 2 | padd0.p | |- .+ = ( +P ` K ) |
|
| 3 | simpl1 | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> K e. B ) |
|
| 4 | simpl2 | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> Y C_ A ) |
|
| 5 | sstr | |- ( ( Z C_ W /\ W C_ A ) -> Z C_ A ) |
|
| 6 | 5 | ancoms | |- ( ( W C_ A /\ Z C_ W ) -> Z C_ A ) |
| 7 | 6 | ad2ant2l | |- ( ( ( Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> Z C_ A ) |
| 8 | 7 | 3adantl1 | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> Z C_ A ) |
| 9 | 3 4 8 | 3jca | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> ( K e. B /\ Y C_ A /\ Z C_ A ) ) |
| 10 | simprl | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> X C_ Y ) |
|
| 11 | 1 2 | paddss1 | |- ( ( K e. B /\ Y C_ A /\ Z C_ A ) -> ( X C_ Y -> ( X .+ Z ) C_ ( Y .+ Z ) ) ) |
| 12 | 9 10 11 | sylc | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> ( X .+ Z ) C_ ( Y .+ Z ) ) |
| 13 | 1 2 | paddss2 | |- ( ( K e. B /\ W C_ A /\ Y C_ A ) -> ( Z C_ W -> ( Y .+ Z ) C_ ( Y .+ W ) ) ) |
| 14 | 13 | 3com23 | |- ( ( K e. B /\ Y C_ A /\ W C_ A ) -> ( Z C_ W -> ( Y .+ Z ) C_ ( Y .+ W ) ) ) |
| 15 | 14 | imp | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ Z C_ W ) -> ( Y .+ Z ) C_ ( Y .+ W ) ) |
| 16 | 15 | adantrl | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> ( Y .+ Z ) C_ ( Y .+ W ) ) |
| 17 | 12 16 | sstrd | |- ( ( ( K e. B /\ Y C_ A /\ W C_ A ) /\ ( X C_ Y /\ Z C_ W ) ) -> ( X .+ Z ) C_ ( Y .+ W ) ) |
| 18 | 17 | ex | |- ( ( K e. B /\ Y C_ A /\ W C_ A ) -> ( ( X C_ Y /\ Z C_ W ) -> ( X .+ Z ) C_ ( Y .+ W ) ) ) |