This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | paddasslem1 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) → ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | 1 2 3 | hlatexch2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) → 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
| 5 | 4 | con3dimp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) → ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ) |