This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | p1le | |- ( ( A e. RR /\ B e. RR /\ ( A + 1 ) <_ B ) -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lep1 | |- ( A e. RR -> A <_ ( A + 1 ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. RR ) -> A <_ ( A + 1 ) ) |
| 3 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 4 | 3 | ancli | |- ( A e. RR -> ( A e. RR /\ ( A + 1 ) e. RR ) ) |
| 5 | letr | |- ( ( A e. RR /\ ( A + 1 ) e. RR /\ B e. RR ) -> ( ( A <_ ( A + 1 ) /\ ( A + 1 ) <_ B ) -> A <_ B ) ) |
|
| 6 | 5 | 3expa | |- ( ( ( A e. RR /\ ( A + 1 ) e. RR ) /\ B e. RR ) -> ( ( A <_ ( A + 1 ) /\ ( A + 1 ) <_ B ) -> A <_ B ) ) |
| 7 | 4 6 | sylan | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ ( A + 1 ) /\ ( A + 1 ) <_ B ) -> A <_ B ) ) |
| 8 | 2 7 | mpand | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + 1 ) <_ B -> A <_ B ) ) |
| 9 | 8 | 3impia | |- ( ( A e. RR /\ B e. RR /\ ( A + 1 ) <_ B ) -> A <_ B ) |