This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| p0le.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| p0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| p0le.0 | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| p0le.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| p0le.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| p0le.d | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝐺 ) | ||
| Assertion | p0le | ⊢ ( 𝜑 → 0 ≤ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | p0le.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | p0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 4 | p0le.0 | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 5 | p0le.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | p0le.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | p0le.d | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝐺 ) | |
| 8 | 1 2 4 | p0val | ⊢ ( 𝐾 ∈ 𝑉 → 0 = ( 𝐺 ‘ 𝐵 ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → 0 = ( 𝐺 ‘ 𝐵 ) ) |
| 10 | 1 3 2 5 7 6 | glble | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ≤ 𝑋 ) |
| 11 | 9 10 | eqbrtrd | ⊢ ( 𝜑 → 0 ≤ 𝑋 ) |