This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Any element is less than or equal to a poset's upper bound (if defined).
(Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)
|
|
Ref |
Expression |
|
Hypotheses |
p0le.b |
|
|
|
p0le.g |
|
|
|
p0le.l |
|
|
|
p0le.0 |
|
|
|
p0le.k |
|
|
|
p0le.x |
|
|
|
p0le.d |
|
|
Assertion |
p0le |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
p0le.b |
|
| 2 |
|
p0le.g |
|
| 3 |
|
p0le.l |
|
| 4 |
|
p0le.0 |
|
| 5 |
|
p0le.k |
|
| 6 |
|
p0le.x |
|
| 7 |
|
p0le.d |
|
| 8 |
1 2 4
|
p0val |
|
| 9 |
5 8
|
syl |
|
| 10 |
1 3 2 5 7 6
|
glble |
|
| 11 |
9 10
|
eqbrtrd |
|