This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the values of the mapping are subsets of a class C , then so is any evaluation of the mapping, even if D is not in the base set A . (Contributed by Mario Carneiro, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptrcl.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| Assertion | fvmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrcl.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | dmmptss | ⊢ dom 𝐹 ⊆ 𝐴 |
| 3 | 2 | sseli | ⊢ ( 𝐷 ∈ dom 𝐹 → 𝐷 ∈ 𝐴 ) |
| 4 | fveq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐷 ) ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝑦 = 𝐷 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ↔ ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑦 = 𝐷 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 8 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 | |
| 9 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 10 | 1 9 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 11 | 10 7 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 13 | 11 12 | nfss | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 |
| 14 | 8 13 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 16 | 15 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) ) |
| 18 | 1 | dmmpt | ⊢ dom 𝐹 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
| 19 | 18 | reqabi | ⊢ ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) ) |
| 20 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 21 | eqimss | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝐵 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
| 23 | 19 22 | sylbi | ⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
| 24 | ndmfv | ⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∅ ) | |
| 25 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 26 | 24 25 | eqsstrdi | ⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 ) |
| 27 | 23 26 | pm2.61i | ⊢ ( 𝐹 ‘ 𝑥 ) ⊆ 𝐵 |
| 28 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶 ) ) | |
| 29 | 28 | impcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 30 | 27 29 | sstrid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) |
| 31 | 30 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑥 ) ⊆ 𝐶 ) ) |
| 32 | 7 14 17 31 | vtoclgaf | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝑦 ) ⊆ 𝐶 ) ) |
| 33 | 6 32 | vtoclga | ⊢ ( 𝐷 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) ) |
| 34 | 33 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
| 35 | 3 34 | sylan2 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
| 36 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐷 ) = ∅ ) | |
| 37 | 36 | adantl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) = ∅ ) |
| 38 | 0ss | ⊢ ∅ ⊆ 𝐶 | |
| 39 | 37 38 | eqsstrdi | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |
| 40 | 35 39 | pm2.61dan | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝐹 ‘ 𝐷 ) ⊆ 𝐶 ) |