This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodv2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| ovmpodv2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | ||
| ovmpodv2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | ||
| ovmpodv2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | ||
| Assertion | ovmpodv2 | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodv2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 2 | ovmpodv2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | |
| 3 | ovmpodv2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | |
| 4 | ovmpodv2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) | |
| 6 | 4 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 7 | 6 | biimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 8 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 11 | 9 8 10 | nfov | ⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 12 | 11 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 13 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 14 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 15 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 16 | 14 13 15 | nfov | ⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 17 | 16 | nfeq1 | ⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 18 | 1 2 3 7 8 12 13 17 | ovmpodf | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 19 | 5 18 | mpd | ⊢ ( 𝜑 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 20 | oveq | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑆 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 22 | 19 21 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |