This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodf.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| ovmpodf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | ||
| ovmpodf.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | ||
| ovmpodf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅 → 𝜓 ) ) | ||
| ovmpodf.5 | ⊢ Ⅎ 𝑥 𝐹 | ||
| ovmpodf.6 | ⊢ Ⅎ 𝑥 𝜓 | ||
| ovmpodf.7 | ⊢ Ⅎ 𝑦 𝐹 | ||
| ovmpodf.8 | ⊢ Ⅎ 𝑦 𝜓 | ||
| Assertion | ovmpodf | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodf.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 2 | ovmpodf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | |
| 3 | ovmpodf.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | |
| 4 | ovmpodf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅 → 𝜓 ) ) | |
| 5 | ovmpodf.5 | ⊢ Ⅎ 𝑥 𝐹 | |
| 6 | ovmpodf.6 | ⊢ Ⅎ 𝑥 𝜓 | |
| 7 | ovmpodf.7 | ⊢ Ⅎ 𝑦 𝐹 | |
| 8 | ovmpodf.8 | ⊢ Ⅎ 𝑦 𝜓 | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 10 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 11 | 5 10 | nfeq | ⊢ Ⅎ 𝑥 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 12 | 11 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) |
| 13 | 1 | elexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 14 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 16 | nfv | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) | |
| 17 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 18 | 7 17 | nfeq | ⊢ Ⅎ 𝑦 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 19 | 18 8 | nfim | ⊢ Ⅎ 𝑦 ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) |
| 20 | 2 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
| 21 | isset | ⊢ ( 𝐵 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐵 ) | |
| 22 | 20 21 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ∃ 𝑦 𝑦 = 𝐵 ) |
| 23 | oveq | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) | |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑥 = 𝐴 ) | |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑦 = 𝐵 ) | |
| 26 | 24 25 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 27 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝐴 ∈ 𝐶 ) |
| 28 | 24 27 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑥 ∈ 𝐶 ) |
| 29 | 2 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝐵 ∈ 𝐷 ) |
| 30 | 25 29 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑦 ∈ 𝐷 ) |
| 31 | eqid | ⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) | |
| 32 | 31 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 33 | 28 30 3 32 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 34 | 26 33 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 ) |
| 35 | 34 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ↔ ( 𝐴 𝐹 𝐵 ) = 𝑅 ) ) |
| 36 | 35 4 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) → 𝜓 ) ) |
| 37 | 23 36 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| 38 | 37 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑦 = 𝐵 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) ) |
| 39 | 16 19 22 38 | exlimimdd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| 40 | 9 12 15 39 | exlimdd | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |