This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodv2.1 | |- ( ph -> A e. C ) |
|
| ovmpodv2.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
||
| ovmpodv2.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
||
| ovmpodv2.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
||
| Assertion | ovmpodv2 | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodv2.1 | |- ( ph -> A e. C ) |
|
| 2 | ovmpodv2.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
|
| 3 | ovmpodv2.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
|
| 4 | ovmpodv2.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
|
| 5 | eqidd | |- ( ph -> ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) ) |
|
| 6 | 4 | eqeq2d | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 7 | 6 | biimpd | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A ( x e. C , y e. D |-> R ) B ) = R -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 8 | nfmpo1 | |- F/_ x ( x e. C , y e. D |-> R ) |
|
| 9 | nfcv | |- F/_ x A |
|
| 10 | nfcv | |- F/_ x B |
|
| 11 | 9 8 10 | nfov | |- F/_ x ( A ( x e. C , y e. D |-> R ) B ) |
| 12 | 11 | nfeq1 | |- F/ x ( A ( x e. C , y e. D |-> R ) B ) = S |
| 13 | nfmpo2 | |- F/_ y ( x e. C , y e. D |-> R ) |
|
| 14 | nfcv | |- F/_ y A |
|
| 15 | nfcv | |- F/_ y B |
|
| 16 | 14 13 15 | nfov | |- F/_ y ( A ( x e. C , y e. D |-> R ) B ) |
| 17 | 16 | nfeq1 | |- F/ y ( A ( x e. C , y e. D |-> R ) B ) = S |
| 18 | 1 2 3 7 8 12 13 17 | ovmpodf | |- ( ph -> ( ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) -> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 19 | 5 18 | mpd | |- ( ph -> ( A ( x e. C , y e. D |-> R ) B ) = S ) |
| 20 | oveq | |- ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
|
| 21 | 20 | eqeq1d | |- ( F = ( x e. C , y e. D |-> R ) -> ( ( A F B ) = S <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 22 | 19 21 | syl5ibrcom | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = S ) ) |