This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunidif | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) | |
| 2 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
| 4 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 5 | ordirr | ⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐵 ∈ On → ¬ 𝐵 ∈ 𝐵 ) |
| 7 | eldif | ⊢ ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ 𝐵 ) ) | |
| 8 | 7 | simplbi2 | ⊢ ( 𝐵 ∈ 𝐴 → ( ¬ 𝐵 ∈ 𝐵 → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 9 | 6 8 | syl5 | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 11 | 1 10 | mpd | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 12 | 3 11 | jctild | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 14 | sseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵 ) ) | |
| 15 | 14 | rspcev | ⊢ ( ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 16 | 13 15 | syl6 | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 17 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 18 | 17 | biimpri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 19 | ssid | ⊢ 𝑥 ⊆ 𝑥 | |
| 20 | 18 19 | jctir | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) ) |
| 21 | 20 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) ) ) |
| 22 | sseq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥 ) ) | |
| 23 | 22 | rspcev | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 24 | 21 23 | syl6 | ⊢ ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 26 | 16 25 | pm2.61d | ⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 27 | 26 | ralrimiva | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 28 | unidif | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) | |
| 29 | 27 28 | syl | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |