This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunidif | |- ( ( Ord A /\ B e. A ) -> U. ( A \ B ) = U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelon | |- ( ( Ord A /\ B e. A ) -> B e. On ) |
|
| 2 | onelss | |- ( B e. On -> ( x e. B -> x C_ B ) ) |
|
| 3 | 1 2 | syl | |- ( ( Ord A /\ B e. A ) -> ( x e. B -> x C_ B ) ) |
| 4 | eloni | |- ( B e. On -> Ord B ) |
|
| 5 | ordirr | |- ( Ord B -> -. B e. B ) |
|
| 6 | 4 5 | syl | |- ( B e. On -> -. B e. B ) |
| 7 | eldif | |- ( B e. ( A \ B ) <-> ( B e. A /\ -. B e. B ) ) |
|
| 8 | 7 | simplbi2 | |- ( B e. A -> ( -. B e. B -> B e. ( A \ B ) ) ) |
| 9 | 6 8 | syl5 | |- ( B e. A -> ( B e. On -> B e. ( A \ B ) ) ) |
| 10 | 9 | adantl | |- ( ( Ord A /\ B e. A ) -> ( B e. On -> B e. ( A \ B ) ) ) |
| 11 | 1 10 | mpd | |- ( ( Ord A /\ B e. A ) -> B e. ( A \ B ) ) |
| 12 | 3 11 | jctild | |- ( ( Ord A /\ B e. A ) -> ( x e. B -> ( B e. ( A \ B ) /\ x C_ B ) ) ) |
| 13 | 12 | adantr | |- ( ( ( Ord A /\ B e. A ) /\ x e. A ) -> ( x e. B -> ( B e. ( A \ B ) /\ x C_ B ) ) ) |
| 14 | sseq2 | |- ( y = B -> ( x C_ y <-> x C_ B ) ) |
|
| 15 | 14 | rspcev | |- ( ( B e. ( A \ B ) /\ x C_ B ) -> E. y e. ( A \ B ) x C_ y ) |
| 16 | 13 15 | syl6 | |- ( ( ( Ord A /\ B e. A ) /\ x e. A ) -> ( x e. B -> E. y e. ( A \ B ) x C_ y ) ) |
| 17 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 18 | 17 | biimpri | |- ( ( x e. A /\ -. x e. B ) -> x e. ( A \ B ) ) |
| 19 | ssid | |- x C_ x |
|
| 20 | 18 19 | jctir | |- ( ( x e. A /\ -. x e. B ) -> ( x e. ( A \ B ) /\ x C_ x ) ) |
| 21 | 20 | ex | |- ( x e. A -> ( -. x e. B -> ( x e. ( A \ B ) /\ x C_ x ) ) ) |
| 22 | sseq2 | |- ( y = x -> ( x C_ y <-> x C_ x ) ) |
|
| 23 | 22 | rspcev | |- ( ( x e. ( A \ B ) /\ x C_ x ) -> E. y e. ( A \ B ) x C_ y ) |
| 24 | 21 23 | syl6 | |- ( x e. A -> ( -. x e. B -> E. y e. ( A \ B ) x C_ y ) ) |
| 25 | 24 | adantl | |- ( ( ( Ord A /\ B e. A ) /\ x e. A ) -> ( -. x e. B -> E. y e. ( A \ B ) x C_ y ) ) |
| 26 | 16 25 | pm2.61d | |- ( ( ( Ord A /\ B e. A ) /\ x e. A ) -> E. y e. ( A \ B ) x C_ y ) |
| 27 | 26 | ralrimiva | |- ( ( Ord A /\ B e. A ) -> A. x e. A E. y e. ( A \ B ) x C_ y ) |
| 28 | unidif | |- ( A. x e. A E. y e. ( A \ B ) x C_ y -> U. ( A \ B ) = U. A ) |
|
| 29 | 27 28 | syl | |- ( ( Ord A /\ B e. A ) -> U. ( A \ B ) = U. A ) |