This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onunel | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) | |
| 2 | 1 | biimpi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 3 | 2 | eleq1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 5 | ontr2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) | |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
| 7 | 6 | expdimp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ 𝐶 → 𝐴 ∈ 𝐶 ) ) |
| 8 | 7 | pm4.71rd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
| 9 | 4 8 | bitrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
| 10 | ssequn2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) | |
| 11 | 10 | biimpi | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
| 12 | 11 | eleq1d | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
| 14 | ontr2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) ) |
| 16 | 15 | expdimp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ 𝐶 → 𝐵 ∈ 𝐶 ) ) |
| 17 | 16 | pm4.71d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
| 18 | 13 17 | bitrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
| 19 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 20 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 21 | ordtri2or2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 24 | 9 18 23 | mpjaodan | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |