This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of TakeutiZaring p. 40. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordun | |- ( ( Ord A /\ Ord B ) -> Ord ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A u. B ) = ( A u. B ) |
|
| 2 | ordequn | |- ( ( Ord A /\ Ord B ) -> ( ( A u. B ) = ( A u. B ) -> ( ( A u. B ) = A \/ ( A u. B ) = B ) ) ) |
|
| 3 | 1 2 | mpi | |- ( ( Ord A /\ Ord B ) -> ( ( A u. B ) = A \/ ( A u. B ) = B ) ) |
| 4 | ordeq | |- ( ( A u. B ) = A -> ( Ord ( A u. B ) <-> Ord A ) ) |
|
| 5 | 4 | biimprcd | |- ( Ord A -> ( ( A u. B ) = A -> Ord ( A u. B ) ) ) |
| 6 | ordeq | |- ( ( A u. B ) = B -> ( Ord ( A u. B ) <-> Ord B ) ) |
|
| 7 | 6 | biimprcd | |- ( Ord B -> ( ( A u. B ) = B -> Ord ( A u. B ) ) ) |
| 8 | 5 7 | jaao | |- ( ( Ord A /\ Ord B ) -> ( ( ( A u. B ) = A \/ ( A u. B ) = B ) -> Ord ( A u. B ) ) ) |
| 9 | 3 8 | mpd | |- ( ( Ord A /\ Ord B ) -> Ord ( A u. B ) ) |