This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr3 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelss | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ¬ 𝐵 ⊆ 𝐶 ) |
| 3 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵 ) ) | |
| 4 | 3 | con2bid | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ( 𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶 ) ) |
| 6 | 2 5 | mpbird | ⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐶 ∈ 𝐵 ) |
| 7 | 6 | expr | ⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴 ∈ 𝐵 ) → ( ¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵 ) ) |
| 8 | 7 | orrd | ⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) |
| 9 | 8 | ex | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |